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A new fluid dynamics computing technique is described for the solution of time- 
varying multifluid 50~s in several space dimensions. An implicit treatment of mass 
transport, equation of state, and work terms allows for the simultaneous presence of all 
flow-speed regimes, from far subsonic (incompressible) to far supersonic. Marker particles 
are used only to follow material interface motions, and are not required through the 
rest of the computing region. A multiphase process for each calculation cycle combines 
both Lagrangian and Eulerian viewpoints, and also allows for the convenience of a 
separate diffusion and dissipation phase, which may be artificial or real, and explicit or 
implicit. The technique is referred to as the GILA method. 

INTRODUCTION 

The numerical solution of fluid flow problems involving the time-varying 
interactions of several materials has usually been accomplished by means of 
Lagrangian techniques [l]. For one-dimensional problems the Lagrangian 
approach remains the most efficient and effective for the majority of purposes. The 
calculation of two- and three-dimensional problems, however, introduces the 
possibility for strong distortions of the interfaces between materials. The 
consequence for Lagrangian calculations is loss of accuracy and sometimes even 
degeneracy to nonsense. 

An Eulerian coordinate system for such problems, on the other hand [2], is 
excellent for the investigation of distortions but lacks the ability to accurately 
follow material interfaces or to resolve translating fine structure. 

Accordingly, there have been developed a variety of hybrid techniques. These 
include basically Eulerian methods with superimposed interface lines [3] or marker 
particles [4] for distinguishing between materials, and basically Lagrangian methods 
with the capability for partial Eulerian rezoning [5]. In this paper, we combine 
features of several of these hybrid methods, utilizing both the rezoned Lagrangian 
coordinate mesh and a marker particle system for interface delineation. 

* This work was performed under the auspices of the United States Atomic Energy Commission. 
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Another type of recent development has been the simultaneous implicit treat- 
ment of the equation-of-state formula and the mass transport equation [6], which 
allows for a full range of Mach numbers from zero (the “incompressible” limit) to 
somewhat greater than unity (the supersonic regime). In the present paper, we 
extend this implicitness to include the treatment of the work terms in the internal 
energy equation [7] and the continuity of pressure across an interface. In addition, 
we extend the multiphase cycle decomposition of the YAQUI technique [5], to 
include a separate phase for the diffusion and dissipation calculations, and recast 
the ICE technique [6] into a Lagrangian form utilizing volume as the principal 
variable, rather than density. Previous arbitrariness in the treatment of internal 
energy variations in a several-material computational cell is easily resolved by the 
new features introduced here. The resulting technique here is referred to as the 
GILA method. 

As with most other techniques for the numerical solution of complicated fluid 
flow problems, the actual calculations can be accomplished only by means of high- 
speed computers. The following descriptions are therefore written in a manner that 
is directly related to the necessary computer programs, and illustrated by proof- 
test examples taken directly from the results of some computer calculations. 

PHASES OF A CALCULATION CYCLE 

Subject to prescribed boundary conditions, the calculation develops the solution 
from prescribed initial conditions through a series of time steps, or cycles, Available 
data at the beginning of each cycle consist of the initial condtions, or the results of 
calculations from the previous cycle. From this configuration, the calculations that 
constitute a full cycle of solution advancement must generate a new configuration 
that accurately represents the changes occurring during this brief interval of time. 

The fluid configuration itself is described in terms of a mesh of cells covering the 
domain of interest. For each cell there are quantities that vary through time, 
denoting such variables as average density, pressure, and velocity components. In 
addition, sets of marker particles are used to show the positions of the interfaces 
between materials. 

These calculations for each cycle in the GILA method can be described in terms 
of a sequence of three phases. This multiphase split is ideal for isolating specific 
areas requiring special treatment, for example, very low Reynolds number flows 
and other circumstances in which additional implicit features are desirable. These 
three phases are outlined as follows. 

Phase 1. This is purely Lagrangian, in that the interface marker particles and 
the mesh of computational cells are assumed to have moved with the fluid during 
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this phase. In practice, neither the cell vertices nor the marker particles are actually 
moved in Phase I, this process being deferred to Phase II. Phase I accomplishes the 
crucial implicit parts of the calculation; the convection, diffusion and dissipation 
in the other phases can usually be purely explicit for most purposes. 

Phase II. The mesh of cells is rezoned, perhaps back to its original location, or 
else to some other specified configuration. Convective fluxes of mass, momentum, 
and energy are calculated to account for the difference between actual fluid dis- 
placement and net mesh displacement. By calculating only net mesh displacement, 
the cell vertices need only be moved once per cycle. The convective flux calculations 
are partly continuous and partly discrete, the distinction being based on the motion 
of the interface markers. 

Phase III. Diffusion and dissipation are calculated. These include both the real 
effects of viscosity and heat conduction as well as any possible artificially diffusive 
terms that must be added to counteract the presence of truncation-error terms. 

To illustrate the GILA methodology, it is sufficient to describe the special case 
of a rectangular mesh of cells in plane coordinates, rezoned each cycle back to its 
original configuration. All of the essential features are thereby demonstrated 
without the obscuring details that are necessary for the more general case of 
arbitrary rezone. Our recommended form for the additional rezone complications 
is essentially that of the YAQUI technique [5]. 

A simplifying option, appropriate for calculations in which the interface distor- 
tions are slight, would treat the interfaces in pure Lagrangian fashion, with the 
rezone feature being restricted to regions away from the interfaces. This would 
eliminate the need for marker particles and partially discrete convective fluxes. 
The present discussion, however, does not make this simplification, since it would 
eliminate the essential features that we require for general large-distortion studies, 
which previously have eluded accurate calculation, especially for low Mach number 
flows along one or more of the coordinate-axis directions. 

PHASE I 

The starting point for the calculations of this implicit, purely-Lagrangian phase 
is the equations for conservation of volume and momentum, and a nonconservative 
form for the internal energy equation, 

(dV/dt) = $ n - u ds, (1) 

M(du/dt) = - $ np ds + Mg, (2) 

M(dl/dt) = -p(dV/dt). (3) 
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The integration extends over a region of space, moving with the fluid, with fixed 
mass, M, and varying volume, V. The unit vector, n, is an outward normal; u is the 
fluid velocity; p is the pressure; lis the specific internal energy; and g is the gravita- 
tional acceleration. 

In place of Eq. (3), we could have used a conservative form for the energy 
equation, but there are several advantages to the present form, which are offset to 
an apparently negligible extent by the slight nonconservation of energy observed in 
our test calculations. One advantage is the considerably easier incorporation of 
the work terms into the implicit formulation. A second, more important advantage, 
is the accuracy afforded for high Mach number flows. In fully conservative formula- 
tions, slight fluctuations of velocity can be reflected in large fluctuations of tempera- 
ture, whereas the more direct relationship between work terms and heat variations 
eliminates this source of temperature inaccuracy. 

For the finite-difference version of these equations, we utilize the mesh layout 
shown in Fig. 1. The velocities and pressure shown there are assumed to be 
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FIG. 1. Velocity and pressure locations in the finite-difference GILA mesh. 

continuous across any material interface that may intersect the cell. The implication, 
as in the PIC method [4], for example, is that both the normal and tangential 
velocity components are continuous. A much more complicated technique could 
be developed to remove the restrictions on tangential velocity continuity, but 
experience has shown that many problems of interest, not previously amenable to 
numerical solution, can be solved with considerable accuracy even with the present 
restriction. 

Allowing that a material interface may pass through a cell, we require two 
values for such quantities as mass, volume and specific internal energy, and utilize 
left subscripts 1 and 2 to denote the two values of each for the cell. In addition, we 
employ an overbar to designate the new value of a quantity resulting from this 
phase. In these terms, Eqs. (l)-(3) become 
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(Mij++/6t)(fiii++ - O*j++> = (Pii - Pii+ 6x + Mil+tg3 

,Mij(liij - l&j) = -pij@ij - IVij), 

,Mij(,iij - Jij) = -j-&Q - ZVij), 

while the equations of state and pressure continuity relations become 

(6) 

(7) 

(8) 

Pi? = fiGMid vij 7 lid2 (9) 

Pii = fiWd2 Eil 9 JiJ~ (10) 

in whichf, and fi are prescribed functions of density and specific internal energy. 
The cell-edge masses, Mi++j and Mij++ , are averages of adjacent total masses. 
The acceleration of gravity is taken to be g, which is positive upwards and negative 
downwards. 

For efficiency of solution when the fluid is nearly incompressible, it is useful to 
replace &ii by (ri + pii), in which rj represents the mean hydrostatic equilibrium 
pressure, given by 

rj - rj+l _ (Mdj++> g 
6Y -m’ 

The meaning of ( > is an average across the row, the result being a function of j 
only. With this, the right side of Eq. (5) remains unchanged, while in Eq. (6) it 
becomes 

Thus, for incompressible flows, p does not include the mean hydrostatic pressure, 
while for compressible flows we retain the regular form of Eq. (6). 

Thus, there are altogether seven unknown quantities: lrij , zViii , pij , Jij , 
Jij , Gi+*i and fiij++ , for which the seven equations are adequate. 

To solve this system by iteration, we use the Chorin-Hirt method [8], which 
eliminates the requirement for derived boundary conditions (e.g., for pressure 
gradients at walls), enhances computer efficiency, and relates the convergence 
criterion to a physically meaningful statement of volume conservation. 

To derive the iteration procedure for the present circumstances, we first use 
Eqs. (4) and (5) to eliminate the unknown velocities from Eq. (4): 
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Let pii be the hth iteration for j& , and ( ju + 6p,,) be the (h + 1) st iteration for 
& . Correspondingly, we let 

in which 

for most cases, or, as discussed previously, 

for incompressible flows, as a technique to enhance solution efficiency. (For a 
generalization, this modification could be incorporated automatically, with a 
discrimination based on Mach number.) As h -+ co, the tilde quantities will 
converge to the final values for Phase I of the cycle. For the first pressure iteration 
in Eqs. (12) and (13) one uses the converged pressures derived in the previous 
cycle, or in the first cycle the prescribed initial pressures. This enables the first 
iteration for the velocities to be calculated, from which the subsequent changes are 
calculated by means of the following modified forms of Eqs. (12) and (13): 

sf.+j = @YwK,,d@Pi~ - 6Pi+d, (14) 

svij+* = (8x8tlMij+*)(aPpij - 6Pij+l)* W) 

In sweeping through the mesh, it is convenient to accumulate the contribution to 
each of the four surrounding velocity points immediately after the calculation of Sp 
in a cell. 

To calculate 6p, we are at liberty to choose the iteration level for each of the 
unknown quantities in Eq. (11) at either h or h + 1. For the quantities in cell ij the 
choice is h + 1; for the surrounding cells, it is h. In preparation for the meta- 
morphosis of Eq. (11) we note that 

S,V+j = - (,V.fj,l,Mij ,Ci”,) Spij 3 (16) 

62 Vij = - (2 Vi/,Mi$2Cfj) SPij 3 (17) 

in which 6V again means the change from hth to (h + 1)st iteration, and c2 
is the adiabatic sound speed, a known function for each material of the specific 
internal energy and possibly the density. Also, it is convenient to define 
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Note that when convergence is attained, Eq. (4) implies the vanishing of Dii for 
every computational cell. Thus, testing for convergence on the basis of sufficiently 
small Dij gives a physically meaningful interpretation to the criterion employed for 
terminating the iteration process. 

With these substitutions, Eq. (11) becomes 

Spii = -l& 6r Sy/Hii , (19) 
in which 

+ at [SY2 (- M;+*j + I&., + sx2 (7i& + T&II C20) 
does not vary through the sequence of iterations. 

Thus, in summary, Phase I commences with an initialization of tilde quantities 
at the values obtained in the previous cycle or, in the case of velocities, calculated 
by means of Eqs. (12) and (13), and proceeds through an iterative sequence, each 
iteration containing the following steps. 

1. bij is calculated with Eq. (18), 
2. Spij is calculated with Eq. (19) and the values of fiii are updated, 
3. Velocity changes are calculated with Eqs. (14) and (15) and the tilde 

velocities are updated, 
4. Updated values of the volumes and specific internal energies are calculated 

by means of the simultaneous solution of Eqs. (7)-(lo), in which all overbar 
quantities are replaced by tilde quantities. In the special case of nearly 
incompressible flow, for example, using an equation of state p = a$ - p,,) 
with a2 very large compared to the square of the fluid speed, the convergence 
rate can be increased considerably by accreting volumes with Eqs. (16) and 
(17) and by normalizing the sum of the volumes to the required total for 
the calculation region. 

These four steps are repeated until Dij is everywhere small in comparison with a 
specified convergence criterion. 

For simple equations of state (e.g., a polytropic gas) the algebraic solution in 
the fourth step is easily accomplished. For more complicated equations of state, a 
numerical procedure (e.g., Newton’s method) may be required. Note that updating 
the volumes is not to be accomplished by means of Eqs. (16) and (17), except in the 
case of nearly incompressible flow. 

The equations described above refer specifically to computational cells containing 
two different materials. For one-material cells, in which ,A4 or ,M is zero, the 
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equations reduce to the correct form by setting both the mass and volume of the 
absent material equal to zero (the corresponding value of V2/Mc2 also vanishing, 
for example, in &). 

By the end of Phase I, implicitly calculated changes have been accomplished for 
the pressures, velocities, specific internal energies and volumes, subject to the 
constraint of pressure continuity across the material interface. 

PHASE II 

This phase commences with a mesh displacement from the (not calculated) cell 
configuration resulting from Phase I to the final rezoned configuration for this 
cycle. For the present discussion we assume that the mesh is returned to its original 
layout of rectangular cells. For this or any partial rezoning, the resulting convection 
must be accomplished and this is the purpose of Phase II. Only for a completely 
Lagrangian calculation can the convective phase be omitted, but for this and any 
partial (not purely Eulerian) rezone procedure, the geometrical factors necessary 
for arbitrary cell shape are much more complicated in the formulations in all three 
phases [SJ. 

One procedure for calculating the rezone and convective-flux phase would require 
the use of complicated techniques for sensing the presence of an interface, as 
described by a line of marker particles or line segments through each cell. One 
would use this knowledge to discriminate among all the various special cases of 
orientation and cellledge intersection in the flux calculations [3]. 

A simpler approach, however, is to use a cloud of marker particles on both sides 
of the interface, extending some appropriate distance into each kind of fluid, but 
not necessarily filling the entire computing region. The motion of these relative to 
the computing mesh indicates, on a proportional basis, the appropriate flux 
coefficients to use in the convective transport of mass, momentum, energy, and 
material kind. Unlike the PIC-method particles [4], these do not really carry con- 
vective quantities in proportion to individually stored particle masses, but are used 
simply to distinguish the relative amounts of the various materials convected [9]. It 
is this second approach that we follow in the present discussion. It should be 
emphasized that the essence of our technique lies in the procedures of Phase I, and 
that any other appropriate method for rezone and convection can be used in 
Phase II, without altering the substance of the implicit phase. 

For convenience in this purely Eulerian rezone discussion, we adopt the view- 
point that the cells have not been displaced at all, and that the fluid moves relative 
to the cells in Phase II. On each side of the interface there is a cloud of marker 
particles, assumed to extend into the interior of each fluid by a distance of at 
least one cell dimension. The mavement of the particles is accomplished by 
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interpolating among the adjacent cell velocities to find an effective velocity for each 
particle in the usual fashion [lo]. The technique, which weights each cell velocity in 
proportion to the overlap area of a particle-centered cell, ensures that particles 
will not cross over each other, provided that u,,&/Zix < 1.0 and u,,&/8y < 1.0, 
in which u, and u,, are the largest magnitudes of the two velocity components. 

For calculating convective fluxes of momentum, we always use a continuous flux 
procedure. For mass and energy, it must be decided for every cell boundary whether 
the flux treatment is to be continuous or discrete. Away from any interface, we use 
a continuous flux calculation, in which the amount of a quantity to be convected is 
given by the product of its density, the time increment, and the fluxing area. For 
the density of mass, momentum, or energy, one may use a simple average 
(corresponding to centered differencing), a donor-cell value (corresponding to 
“upwind’ differencing), or any variably weighted combination of the two. 
Especially for strongly supersonic flows, the donor-cell ditferencing for internal 
energy flux may be required in order to avoid negative values. The details are the 
same as in many previous techniques. 

Discrete fluxing occurs for mass and energy whenever fluid moves from a mixed- 
fluid cell to a pure-fluid cell, from a mixed-fluid cell to another mixed-fluid cell, and 
from a pure-fluid cell of one kind to a pure-fluid cell of another kind. The amount 
of a quantity convected by the discrete-flux calculation depends on the number of 
marker particles crossing the interface between the two cells. The total amount of 
mass and energy for each material in the donor cell is equally divided among the 
current total number of particles of each kind, and this amount is subtracted from 
the donor cell and added to the receiving cell for every particle crossing the bound- 
ary. Only to this extent do the particles themselves enter directly into the calcula- 
tions; in contrast to the PIC-method particles [4], the present markers carry 
different amounts every time they cross a cell boundary, depending upon the 
circumstances at the instant of crossing. 

While the conceptual description of discrete fluxing is easily given, the 
corresponding computer logic is somewhat complicated, especially since the 
combination with continuous fluxing must be accomplished with strict local 
conservation throughout the mesh of cells. The full details are omitted from the 
present discussion. 

After the flux calculations have been completed, the new volumes of the two 
components in each mixed cell must be calculated. For this purpose, we again 
impose the condition that the equation-of-state pressures for the two materials be 
the same. This, together with the requirement that the sum of the volumes equals 
the initial volume of the cell, is sufficient for the purpose. We have observed, 
incidentally, that for very stiff equations of state, the simultaneous solution for the 
two volumes can lead to nonsense unless the product of normal density with sound 
speed is nearly the same for both materials. 
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It is apparent that discrete fluxing results in step-wise variations, with fineness 
that depends on the density of marker particles. In one computational cycle there 
may be no convective flux at all, followed the next cycle by enough to make up for 
the deficit. Thus, as in PIC-method calculations, there is a certain statistical nature 
to the results. In many respects, however, the present marker particle approach 
improves upon the PIC variety. 

1. Discrete fluxing occurs only near interfaces, not throughout the region. 
2. Discrete mass flux is calculated on the basis of the changing local densities, 

rather than from the assignment of a fixed mass to each particle. 
3. Particle spacing can be much finer, since markers are required only in the 

vicinity of an interface. 
4. Only mass and internal energy are discretely fluxed, the momentum flux 

being everywhere continuous. 

All of these features, combined with the implicit treatment of Phase I, extend 
considerably the scope of applications for which this new method can be utilized. 

PHASE III 

Isolation of the calculations in Phase III from the rest has several advantages. 
For problems with large viscosity or coefficient of heat conduction, it is easier to 
build in an implicit treatment for enhancing numerical stability. For versatility, the 
isolation allows the investigator to switch quickly from one type of diffusion to 
another, among, for example, artificial viscosity, true molecular viscosity, and the 
turbulent diffusion of mass, momentum and energy [I I]. In this phase, too, would 
be the place to locate the useful anti-truncation-error terms that Rivard and 
associates [12] have recently found to be especially useful in enhancing accuracy. 

In all, there are four parts in Phase III. 

1. The artificial diffusion of mass, restricted to diffusion within a material 
kind, but not between materials, 

2. Momentum diffusion, by artificial viscosity or physical stresses, the latter 
representing either true viscosity (through coefficients X and p., possibly 
variable) or turbulence (through a Reynolds stress tensor or the simplifica- 
tion afforded by a variable eddy viscosity), 

3. Energy diffusion, from molecular or turbulent heat conduction, 
4. Dissipation heating, to account for the loss of mean-flow kinetic energy 

resulting from momentum diffusion. 
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The equations appropriate for these processes can be exhibited most concisely 
for the special case of constant diffusion coefficients, the more general cases being 
direct extensions as appropriate. 

The diffusion of mass never takes place between two different materials. In 
addition, we allow no mass diffusion into or out of a two-material cell, because our 
experience has shown that if one or both of the mixed-cell materials has an excep- 
tionally stiff equation of state, then even a small amount of mass diffusion can 
profoundly disturb the continuity-of-pressure condition in the mixed cell. 

Between two pure cells of the same material kind, we write 

where, as before, an overbar means the new value of a quantity for this phase, and 
the absence of the overbar means the value at the beginning of this phase. Although 
Y is the same for every cell at this stage of the calculation ( Vij = GxSy), we write 
Eq. (21) as shown to emphasize that mass diffusion flux must be proportional to 
difference in density in the general case. 

Momentum diffusion consists of the combined effects of longitudinal (com- 
pressive) transport and transverse (shear) transport. The former is especially of 
importance for the numerical calculation of shocks; the latter may be required for 
the numerical stability of incompressible flows. Both are required (in more general 
form than shown below) for truly viscous or turbulent flows. The appropriate form 
can be illustrated as follows. 

(22) 

, 
- MijQij(Vij++ - uij-t)] ‘r g iNi+qj+&+li+t - Vij++) 

- N-+j+&kj+* - vi-1i+&l. (23) 

Q, is a variable coefficient, which, for artificial viscosity, would be a positive 
constant for a compressive region and zero (or possibly a negative constant to 
alleviate truncation-error effects) in an expansive region. In this simple form, A is a 
constant with the dimensions of velocity. 
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For internal energy, we proceed in two stages. The first is the heat conduction 
part 

M,Zij = MiiZij $ (B Sy 8t/8X)(Zi+,j + Zi-lj - 2Zij) 
+ (B 6x WhWij+l + h-1 - Xi) 

in which B is a positive constant. 

(24) 

Finally, the dissipation of kinetic energy in Phase III is calculated. The process 
of momentum diffusion alters the kinetic energy in two ways, a redistribution and 
a net decrease. The former should have no effect on internal energy, while account 
for the latter must be reflected in an increase in internal energy. To describe this 
dissipation, we calculate 

For a pure (unmixed) cell, 
iii = zij + szij . 

For a two-material cell, we simultaneously solve 

JT,(,i,, - IZ;j) + ,Efij(,i, - 2Z&) = (,Rij + ,l@,J SZii (26) 

and the continuity equation for pressure, 

ficlmijil Kj , ,iij) = fx2w2Kj , ,iij). 

This dissipation calculation is not rigorously conservative of energy, but experience 
with a variety of calculations shows that the discrepancy is not appreciable. We 
have tried an alternative procedure in which the change of kinetic energy in each 
cell is locally balanced by a corresponding change in internal energy. While this 
is rigorously conservative, the results are poor, because this reflects both the 
dissipation and the rearrangement of kinetic energy into the internal energy profile, 
rather than just the net dissipation. 

DISCUSSION 

The essential features of the GILA method have been described in the preceding 
paragraphs. They form the basis for numerous possible extensions, some of which 
have already been mentioned. Others that have been considered are discussed 
briefly in this section. 
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For calculations in cylindrical coordinates with an azimuthal velocity, the 
extensions are straightforward. The incorporation of a centrifugal term is easily 
accomplished in Phase I, during the initialization of the tilde velocities. With 
axial symmetry, the azimuthal velocity remains unchanged in Phase I, the convec- 
tive and coriolis terms being calculated in Phase II, with the viscous stress effects 
added in Phase III. This version, currently being developed for the study of tornados 
and dust devils, will be reported later [ 131. 

A special case to be considered has one material at a very much smaller density 
than the other. Air-water interactions are an interesting example. At the extreme, 
one of the materials could even be required to represent a vacuum. In the case of 
such a mismatch in density, it is expected that the equation of state for the heavier 
material would have the qualitative features of a “stiffened gas ” [14], for which 
we write 

P = a”(P - PO) + (7 - 1) PI. (27) 

If the coefficient a2, sufficiently exceeds the level of internal energy, I, then the 
pressure can vanish for a density that does not ditfer appreciably from the “normal” 
density, p. . Thus the “mixed” cell iteration (with material and vacuum) can 
satisfactorily converge to the correct free-surface vanishing of normal stress. Note, 
however, that for low-Reynolds-number flows, the viscous contribution to the 
normal-stress condition may be appreciable, in which case its presence is required 
in Phase I for both freesurface and multimaterial calculations. In a very large but 
finite density mismatch, a near equilibrium in pressure may result in subsonic flow 
on one side and supersonic flow on the other, in which case the implicit features of 
Phase I are of especially great importance. 

SOME SAMPLE CALCULATIONS 

To demonstrate the validity of the GILA method, we have performed a variety 
of calculations, both one-dimensional and two-dimensional. The one-dimensional 
studies were of two types, uniform translation of an interface and the shock tube. 

The uniform translation studies were designed to show that the interface treat- 
ment would allow a pair of materials initially in uniform equilibrium to propagate 
at constant velocity through the computational mesh without appreciable depar- 
tures from uniformity. The results, of course, show that absolute uniformity cannot 
be maintained, except under very special conditions, the departures depending 
principally on the density of marker particles. We first examined a slightly super- 
sonic flow. With a sparse cloud on each side of the interface (eight rows of particles 
on each side), the fluctuations of fluid velocity nearby averaged about 5 %; with a 
finer spacing (twenty five rows on each side) the fluctuations were reduced to about 
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1%. The same calculations for far subsonic translation were performed with very 
large specific internal energy, and alternatively with a2 very large in Eq. (27), with 
resulting fluctuations distinctly smaller than those for the supersonic test. 

The principal goals of the shock tube calculations were to examine the conse- 
quences of the new implicit features, and to see if the interface treatment allows for 
a sharper definition of the contact surface than is usually attained in purely Eulerian 
calculations [15]. The results for a two-to-one density ratio are shown in Fig. 2, 

FIG. 2. 
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One-dimensional GILA calculation of a 29 density-ratio shock 

which demonstrates the well-resolved contact surface. At the same time, the shock 
and rarefaction regions are also well-represented, in comparison with the analytical 
solutions shown in the figure. 

In the two-dimensional examples, the interface was allowed to distort con- 
siderably. We illustrate the accuracy of results by comparison with the calculations 
of Daly [16] for the Rayleigh-Taylor instability of two superimposed fluids with a 
density ratio of 2 : 1. His completely incompressible calculations were simulated 
in the GILA-program run by choosing 0.01 as the Mach number for the initial 
perturbation, Figures 3 and 4 show that the results are nearly identical. 
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16 HARLOW AND AMSDEN 

The next step in our study was to examine the results at other Mach numbers. 
Figure 5 contrasts the behavior for the small and large Mach number cases. For 
incompressible flow, the initial consequence of a sheet perturbation applied to the 
interface is the development of flow with vanishing divergence extending well into 
both fluids. With a perturbation at near unit Mach number, the very different 
appearance comes about through the development of compression and rarefaction 
regions. 

In a slight variation of the problem, we applied the same perturbation to an 
interface with no density discontinuity, and watched the subsequent oscillatory 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 

.......... 
j .......... 

I i I 

FIG. 5. Early stages of two interface instability calculations, contrasting the behavior for 
large and small Mach number cases. The plots are paired sequences of particles andvelocity vectors. 
Lengths of vectors plotted are scaled to the instantaneous maximum velocity in the mesh. In 
the upper set calculated with a2 = 0, the effects of compressibility are evident. Problem times 
shown are O.& and 1.60, and the maximum velocities at these two times are 0.54 and 0.12. The 
lower set is from the same times in a calculation with a 2 = 104, well in the incompressible regime. 
Maximum velocities are reduced to 0.15 and 0.07. 
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coasting. Commencing from a unit-Mach-number perturbation, the initial stages 
consisted of the propagation of shocks and sound signals throughout the confined 
region of the box. The explicit incorporation of viscosity damped the motion to the 
extent that linear theory was applicable for the development of a comparison 
solution. A normal-mode analysis showed various possible frequencies for the 
motion, the computer calculation of which is illustrated by velocity vector plots in 
Fig. 6. Each of the modes decreases in amplitude with its own decay rate. A 
logarithmic plot of the maximum fluid speed in the system shows that the predicted 
frequencies can be identified and the decay-rate slopes confirmed. Our experience 
indicates that no explicit procedure exists that can perform this type of far-subsonic 

.......... 
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.......... 
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1 

FIG. 6. A calculation similar to the upper sequence in Fig. 5 (a” = 0), but with no density 
discontinuity across the perturbed interface. The resulting oscillatory coasting is shown by velocity 
vectors at problem times 0.10, 0.60, 1.10, 1.60, 2.10, 2.60, 3.10, and 3.60, reading across, then 
down. Maximum velocities are damping slowly through viscous effects, and are in the 0.04 range 
in the last three frames. 
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calculation, in which the effects of compressibility are crucial to the development 
of an oscillatory mode. 

The conclusions from these and other studies performed with our proof-test code 
are that the GILA technique extends considerably the capability to calculate 
complicated fluid flow problems, with several materials distorting strongly at 
either low or high Mach number, in a multidimensional domain. The efficiency and 
convenience of the multiphase procedure was apparent throughout the 
developments. Various alternatives were explored for each of the phases, and our 
experience shows that even further optimization is possible, especially in the 
calculation of convective fluxes in Phase II, for which greater accuracy may even- 
tually be achieved by means of completely continuous fluxing rather than the 
partially discrete version described for the present work. 
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